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Abstract

Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar
(InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to
continental-scale estimates of vegetation canopy height. Supported by data from the 2000 Shuttle Radar Topography Mission (SRTM), the
National Elevation Dataset (NED), the LANDFIRE project, and the National Land Cover Database (NLCD) 2001, this paper describes a data
fusion and modeling strategy for developing the first-ever high-resolution map of canopy height for the conterminous U.S. The approach was
tested as part of a prototype study spanning some 62,000 km2 in central Utah (NLCD mapping zone 16). A mapping strategy based on object-
oriented image analysis and tree-based regression techniques is employed. Empirical model development is driven by a database of height metrics
obtained from an extensive field plot network administered by the USDA Forest Service–Forest Inventory and Analysis (FIA) program. Based on
data from 508 FIA field plots, an average absolute height error of 2.1 m (r=0.88) was achieved for the prototype mapping zone.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivation

Spatially extensive and accurate maps of vegetation canopy
height are of value not only to ecologists and land managers
working in diverse fields such as biodiversity conservation,
wildfire risk assessment, and timber production, but also to
climate change scientists focused on reducing the uncertainty
associated with the carbon cycle component of Earth's climate
system. High-resolution maps of canopy height have the
potential to significantly improve the accuracy of aboveground
biomass and carbon stock baselines upon which models of
future climate change necessarily depend. Reliable baseline
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information is also needed for measuring and monitoring carbon
fluxes and for verifying emissions reductions in the context of
national and international carbon accounting strategies.

Although the forests of the United States and other mid- to
high-latitude nations are covered by extensive inventory plot
networks, these data are largely inadequate for the provision of
high-resolution estimates of aboveground biomass and carbon
stocks. Whereas dry biomass, which contains 45 to 50% carbon
by weight (Linder & Axelsson, 1982; Reichle et al., 1973), may
be well quantified for the localized areas where measurements
exist, extrapolation across larger unsampled regions can
contribute to considerable estimate uncertainty (Houghton &
Goodale, 2004). Consequently, at regional to continental scales,
estimates of multi-dimensional forest structural metrics are
necessarily acquired through the use of remote sensing
technologies in concert with ground-based measurements
derived from national forest inventories. The practice of
leveraging the combined strengths of forest inventory and
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satellite image data dates back to the early 1990s in Finland
(Tomppo, 1991). More recent examples include applications in
northern Europe and the United States (Huang et al., 2002;
McRoberts & Liknes, 2005; Reese et al., 2002, 2003; Tomppo
et al., 2002).

Numerous approaches have been put forth for the provision
of aboveground biomass estimates using the range of available
remote sensing technologies including passive optical (e.g.,
Dong et al., 2003;Myneni et al., 2001), radar (e.g., Dobson et al.,
1992; Ranson et al., 1997), and lidar (e.g., Drake et al., 2002;
Hyde et al., 2005; Lefsky et al., 1999a,b); however, a technique
has yet to be presented that is consistent, reproducible, and
applicable across broad geographic extents (Rosenqvist et al.,
2003). This is largely due to the fact that biomass is a three-
dimensional metric— the accurate estimation of which requires
biophysical measures, and therefore remote sensors, that capture
both the horizontal (e.g., canopy density/cover) and vertical
(e.g., canopy height) structural character of the vegetation (Mette
& Hajnsek, 2003; Mette et al., 2004; Treuhaft et al., 2004).
While the science of acquiring remotely sensed estimates of
horizontal vegetation structure has matured considerably over
the past 25 years, only in the last decade have significant
advances in instrument development made it possible to obtain
consistent and accurate measurements of canopy height and
related metrics of vertical vegetation structure (e.g., Lefsky et al.,
2002; Treuhaft & Siqueira, 2000). Motivated by these advance-
ments, this research focuses on the three-dimensional structure
of forest vegetation in an effort to expand the scientific basis for
regional- to continental-scale carbon accounting. Specifically,
this research presents an approach to the generation of high-
resolution, spatially extensive maps of vegetation canopy height.
The approach is the foundation for an ongoingNASA-sponsored
project with the ultimate goal of generating the first-ever circa-
2000 baseline dataset of vegetation canopy height, aboveground
biomass, and carbon stocks for the conterminous U.S. This
project is possible, in part, because of the complimentary nature
and quasi-synchronous development of several national digital
geospatial datasets. The following section provides a brief
introduction to these datasets.

1.2. Confluence of national mapping efforts

The last several years have been marked by an unprecedent-
ed confluence of high-resolution geospatial data sources and
derived products for the conterminous U.S. The first of these
datasets was acquired early in 2000 when the NASA-JPL
Shuttle Radar Topography Mission (SRTM) used C-band
(5.6 cm, 5.3 GHz) interferometric synthetic aperture radar
technology (InSAR) to obtain high-resolution (one arc-second)
elevation data on a near-global scale for the purpose of
generating the most complete digital topographic database of
Earth. Rather than reflecting the “bald-earth” surface, an
SRTM-derived digital elevation model (DEM) is unique in
that it more closely reflects the elevation surface formed by
vegetation (e.g., tree canopies) and anthropogenic features (e.g.,
buildings, towers, etc.). Assuming the elevation of the bald-
earth surface is known, an estimate of the interferometric
“scattering phase center height” (hspc) can be computed (Brown,
2003; Brown & Sarabandi, 2003; Kellndorfer et al., 2004;
Kobayashi et al., 2000; Saich et al., 2001). It follows that the
value of hspc is correlated with both the amount and height of
vegetation present. Recent research has confirmed the feasibil-
ity of using SRTM DEMs together with bald-earth topography
data to estimate the height of vegetation canopies (Brown, 2003;
Brown & Sarabandi, 2003; Kellndorfer et al., 2004; Walker
et al., 2007).

A second dataset with considerable potential to provide
information on the horizontal structure of forests is the 2001
National Land Cover Dataset (NLCD; Homer et al., 2004). This
multi-layer dataset, currently being developed by the Multi-
Resolution Land Characteristics (MRLC) Consortium, uses an
ecoregional mapping approach and consists of 1) normalized
Tasseled Cap (TC) transformations of Landsat 7 ETM+ imagery
from three time periods (early, peak, and late growing season), 2)
classified land cover data derived from TC imagery, 3)
independent image derivatives of imperviousness and tree canopy
density, and 4) independent ancillary data layers including DEM
derivatives of slope, aspect and elevation derived from the
National Elevation Dataset (NED), which was seamlessly
compiled for the entire United Sates for the first time in 1999.
All data layers are being released at a grid spacing of 30 m.

A third and final dataset, also under active development, is
the multi-partner Landscape Fire and Resource Management
Planning Tools Project (LANDFIRE). LANDFIRE is an
ecosystem, wildland fire, and wildland fuels mapping project
designed to generate a comprehensive suite of spatial data layers
describing wildland fuel, existing vegetation composition and
structure, historical vegetation conditions, and historical fire
regimes. A set of more than 20 national map products is being
produced by LANDFIRE using the NLCD ecoregional
mapping approach. Specific deliverables include maps of
mean fire return interval, percent fire severity, and successional
class, as well as existing vegetation type, canopy cover, and
canopy height. The canopy height product is currently in
development and is slated to be released as a discrete (i.e., five
forested height classes) data layer. Aboveground biomass and
carbon stocks are not being mapped as part of the LANDFIRE
project. Consistent with the NLCD, all LANDFIRE data layers
are being released at a grid spacing of 30 m.

The success of a mapping project such as the one proposed
here depends largely on the availability of a suitable ground
reference database. Complimenting the aforementioned assem-
blage of national spatial datasets is a national ground reference
database available as part of the Forest Inventory and Analysis
(FIA) program administered by the USDA Forest Service. In
continuous operation since 1930, the FIA program is the only
nationwide source of timely, consistent, and reliable forest
inventory and monitoring information. The FIA Database
(FIADB) contains plot-level forest biometric information
collected repeatedly at more than 125,000 locations throughout
the United States.

Given the highly complementary nature and quasi-synchro-
nous development of the SRTM, NLCD, and LANDFIRE data
sources, an exceptional opportunity exists for exploiting
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InSAR/optical synergies. Whereas the SRTM InSAR data
provide information pertaining to the vertical structure, i.e.,
primarily vegetation height, several optically-derived layers
provided as part of the NLCD and LANDFIRE projects are
suitable for characterizing key aspects of horizontal structure
(i.e., vegetation type, canopy cover/density, etc.).

1.3. Objectives

Building on knowledge gained in the context of research
conducted by Kellndorfer et al. (2004), Pierce et al. (2006), and
Walker et al. (2007), the general objective of this article is to
present the results of a proof-of-concept study focused on
development of a robust empirical approach for generating a high-
resolution, year-2000 baseline estimate of vegetation canopy
height for the conterminous U.S. The approach utilizes data
fusion, knowledge-based image segmentation, and regression-
tree techniques to synergistically exploit the information content
of the SRTM interferometric data together with that of data layers
obtained from the NED, NLCD and LANDFIRE datasets.

To facilitate development, implementation, and evaluation of
the proof-of-concept study, as well as enable future nationwide
implementation of the approach, the ecoregional “mapping-
zone” concept developed as part of the NLCD 2001 project was
adopted for use. The concept, which has also been implemented
by the LANDFIRE project, was developed in order to simplify
the process of large-scale land cover mapping by stratifying the
nation into 66 sub-regions that represent relative homogeneity
in terms of biophysical (landform, soil, and vegetation) and
spectral characteristics (Homer & Gallant, 2001; Homer et al.,
2004). For the purposes of this proof-of-concept study mapping
zone 16 (MZ16) was chosen. The zone, which spans over
62,000 km2 including portions of central Utah, southeastern
Idaho, and southwestern Wyoming, was selected because it was
the first zone for which all data layers relevant to this research,
particularly those currently under production as part of the
NLCD and LANDFIRE projects, were available.

2. Mapping zone 16 description

The boundary of MZ16 largely follows that of Ecoregion 19
(Wasatch and Uinta Mountains) of the United States Environ-
mental Protection Agency's Level III Ecoregions of the
Conterminous United States (Woods et al., 2001). The zone is
composed of a core area of high-elevation, steep, rugged
mountains with narrow crests and valleys. This core is flanked
in some areas by dissected plateaus and open high mountains
(Woods et al., 2001). Elevations within the zone range from 1450
to 4100 m. Over half of the zone is forested, with both vegetation
and underlying soils following a pattern of elevational zonation.
Low elevations are typically characterized by grasses and a
variety of shrubs (often heavily grazed) including sagebrush,
chaparral, and mahogany. Low to middle elevations (also grazed)
are covered by a range of vegetation types, which include oak and
pinyon–juniper woodlands, as well as areas of chaparral, aspen
(Populus tremuloides), ponderosa pine (Pinus ponderosa), and
Douglas-fir (Pseudotsuga menziesii). Middle to high elevations
tend to be covered by large continuous tracts of coniferous forest
that include Engelmann spruce (Picea engelmannii), subalpine
(Abies lasiocarpa) and white fir (Abies concolor), as well as
bristlecone (Pinus longaeva), limber (Pinus flexillis), and
lodgepole pine (Pinus contorta). The highest peaks rise well
above tree-line and are characterized by alpine vegetation.

3. Model development database

A prerequisite to the construction of multivariate tree-based
regression models relating observed canopy height to SRTM
and other remote sensing and ancillary data is the compilation of
a model development database (MDDB). The MDDB consists
of multiple records corresponding to the number of reference
observations (i.e., FIA field plots) available within the mapping
zone. Each record contains multiple fields, which correspond to
the specific response (derived from the FIADB) and predictor
(derived from remote sensing and ancillary data sources)
variables on which modeling is to be based. The following
section describes the various data acquisition, image processing,
and computational steps involved in compilation of the MDDB.
A diagrammatic summary of these steps is presented in Fig. 1.

3.1. Data acquisition and preprocessing

3.1.1. SRTM and NED data
For a complete description of both the SRTM and NED

digital elevation data, the reader is directed to Kellndorfer et al.
(2004). The SRTM C-band and NED DEMs for MZ16 were
acquired from the United States Geological Survey (USGS)
EROS Data Center (Dean Gesch, pers. comm.) in the form of 17
individual raster image tiles each covering an area of one degree
by one degree. Tiles from each dataset were mosaiced and an
SRTM minus NED difference (SRTMDIFF) image was
calculated based on the rationale put forth by Kellndorfer et al.
(2004). A topographic slope (SLP) layer was also generated
from the NED DEM.

3.1.2. NLCD 2001 data
A detailed summary of the NLCD 2001 data-layer production

methods is presented by Huang et al. (2001) and Homer et al.
(2004). NLCD 2001 data were acquired from the USGS EROS
Data Center (Dean Gesch, pers. comm.) and included layers of
land cover (LC) and canopy density (CD). The LC layer,
acquired primarily for reference purposes, consists of 17 classes
that generally approximate the thematic detail represented in the
Level II classification of Anderson et al. (1976). Developed
independently of the LC layer, the CD layer depicts the spatial
distribution of tree canopy density (trees ≥5 m tall) as a
continuous variable with values ranging from 1 to 100% (Huang
et al., 2001).

3.1.3. LANDFIRE data
A single data layer, existing vegetation type (EVT), was

acquired from the LANDFIRE project website (www.landfire.-
gov), which is the primary source for additional information on
the LANDFIRE project and individual data-layer production

http://www.landfire.gov
http://www.landfire.gov
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methods. The EVT classification scheme is based on the
terrestrial ecological systems classification developed by
NatureServe for the Western Hemisphere (Comer et al.,
2003). The scheme was developed to provide a practical, mid-
scale classification unit that could be readily mapped from
remotely sensed imagery and readily identified by managers in
the field. Of the 599 ecological systems (hereafter referred to as
classes) identified within the U.S., 60 were observed to occur
within MZ16. Of these, 53 were characterized by some form of
woody or herbaceous vegetation while the remaining seven
Fig. 1. Process flow diagram depicting the princ
were non-vegetated, e.g., water, permanent snow/ice, barren,
developed, etc. Of the vegetated classes, 23 were forested.

3.1.4. FIA data
The monitoring component of the FIA program consists of a

systematic sample across all public and private lands in theU.S. In
the late 1990s, the FIA program adopted a common field plot
design consisting of four 1/24th acre fixed-radius (24.0 ft/7.3 m)
subplots (FIA, 2004). Field plots are distributed across the
landscape with approximately one sample (FIA plot) every
ipal steps in the height mapping approach.
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6000 acres (≈2428 ha). Each plot (i.e., an assemblage of four
subplots) is required to have a tree stocking of at least 10%within
a one-acre (0.4 ha) neighborhood. Field crews collect plot-level
data on forest type, site attributes, tree species, and tree size
including stem diameter and height, and overall tree condition.
For further information on the FIA program, the reader is directed
to the national FIAwebsite (www.fia.fs.fed.us).

FIA data for MZ16 were downloaded from Version 1.7 of the
FIA database (FIADB) (www.ncrs2.fs.fed.us/4801/FIADB).
Due to issues involving the timing of data availability, only
MZ16 data occurring within the State of Utah (95% of the
mapping zone by area) could be accessed. Data from the Utah
acquisition were collected during Subcycles 1–4 (i.e., 2000–
2003) of Utah's second state-wide inventory. Although the
latter Subcycles were surveyed post-2000, i.e., more recently
than the year on which this baseline mapping project is focused,
inclusion of data from this broader temporal range was deemed
acceptable given 1) the relative slow growth of trees in the dry
basins and montane landscapes of MZ16 and 2) the need for a
sufficient sample size on which to base model development. No
attempt was made to adjust (i.e., back cast) the heights of trees
measured in the latter Subcycles (post-2000). As a whole, these
data represent the most consistent, complete, and accurate
source of forest biometric information for the region during the
time period of interest.

The FIADB is a relational database consisting of twelve
hierarchical tables. Prior to computing plot-level canopy height
metrics from the UTAH FIADB, the initial database, containing
3665 plots, was filtered to extract all forested plots, i.e., plots
containing trees (stems ≥5.0 in/12.7 cm in diameter) based on
entries in the FIADB Tree Table. The filtering procedure
produced 1395 plots. Using data contained in the ACTUALHT
(i.e., actual height) field of the FIADB TREE Table, three plot-
level canopy height metrics were computed including basal-area
weighted average height (BAWHT), average height (AVGHT),
and maximum height (MAXHT). The BAWHTof each plot was
calculated according to:

BAWHT ¼ 1
BAPlot

Xn

i¼1

ðBAi⁎ACTUALHTiÞ ð3:1Þ

where BAi is the basal area (m
2) of the ith tree in the plot and is

calculated according to:

BA ¼ 0:00007854⁎DBH2 ð3:2Þ
(DBH is the diameter at breast height (cm) from the TREE
Table) and BAPlot is the total basal area (m

2) for the plot and is
calculated according to:

BAPlot ¼
Xn

i¼1

BAi ð3:3Þ

The AVGHT of each plot was calculated according to:

AVGHT ¼ 1
n

Xn

i¼1

ACTUALHTi
ð3:4Þ

A total of seven FIA-based reference variables were added to
the MDDB for use in subsequent model development activities.
These variables included FLDTPYCD (forest type code),
CONDID (condition class number, e.g., stand density, size,
origin, etc.), BAWHT, AVGHT, and MAXHT, as well as the
aspect (ASP) of the central subplot and a unique plot identi-
fication code (PLOTID).

3.2. Extraction of segment-based image attributes

As documented in Kellndorfer et al. (2004) and Walker et al.
(2007), the SRTMDEMdata contain residual phase noise errors,
which left unmitigated, result in erroneous estimates of the hspc
and render the data largely unusable as a legitimate source of
canopy height information. InWalker et al. (2007), a knowledge-
based strategy to phase noise error mitigation, and ultimately
hspc calculation, was proposed. The method, developed further
in the context of this research, was implemented across MZ16.
The following sections provide a description of the approach as
implemented (see also Fig. 1).

3.2.1. Segment-based noise mitigation
A segmentation-based approach to sample (i.e., pixel)

aggregation and averaging was brought to bear on the problem
of SRTM phase noise reduction. Here the term “segmentation”
refers to the subdivision of an image or image stack into a number
of regions, i.e., polygons or image objects, based on some pre-
defined criteria (Baatz et al., 2004). The software package
eCognition provided the computational framework in which
image segmentation was accomplished. Unlike block-filtering
techniques which impose rectangular averaging schemes, eCog-
nition provides for the automatic and optimal delineation of local
homogenous regions, e.g., irregularly-shaped forest tracts, within
which sample averaging and consequent noise reduction can be
more smartly constrained.

A segmentation strategy was formulated with the general
goal of producing image objects that were 1) of sufficient size
to provide for adequate sample averaging and noise reduction
in forested regions, 2) homogenous in terms of topographic
slope, 3) homogenous in terms of vertical forest structure (i.e.,
canopy height), and 4) homogenous in terms of horizontal
forest structure (i.e., canopy density). The realization of this
goal was a challenge given the inherent antagonism of object
size and object homogeneity. That is to say, all else being
equal, as the average size of image objects increases, so does
the amount of topographic and structural heterogeneity
observed. An average object size of 15–20 pixels was targeted
following an evaluation of previous research by Kellndorfer
et al. (2004) and Walker et al. (2007). Objects of this size are
deemed large enough to provide for adequate noise reduction
under most SRTM datatake regimes while at the same time
remaining small enough to allow for sufficient within-object
homogeneity. Balancing noise reduction with object homoge-
neity is essential as both are critical to the generation of robust
object-based mean estimates of the hspc.

As far as possible, balance was achieved using a hierar-
chical (i.e., nested) segmentation approach. Three image
layers, including the NED-derived slope (SLP), the SRTM
minus NED difference (SRTMDIFF), and the NLCD canopy

http://www.fia.fs.fed.us
http://www.ncrs2.fs.fed.us/4801/FIADB


Table 1
Variables included in the final model development database (MDDB)

Variable Variable
description

FIA-based
reference
variables

Object-
based
image
variables

Response (R)
or predictor (P)
variable

PLOTID Plot Identification Code X –
CONDID Condition Class

Number
X –

FLDTYPCD Forest Type Code X P
BAWHT Basal-Area Weighted

Average Height
X R

AVGHT Average Height X R
MAXHT Maximum Height X R
ASP Aspect of Subplot 1 X P
MHSPC Mean Scattering Phase

Center Height (SRTM)
X P

SDHSPC S.D. Scattering Phase
Center Height (SRTM)

X P

MSLP Mean Slope (NED) X P
MCD Mean Canopy Density

(NLCD)
X P
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density (CD)1, served as inputs to the segmentation process.
The rationale behind this strategy can be summarized as
follows. First, a relatively coarse segmentation was generated
using slope (SLP) as the primary input. This initial
segmentation represented an attempt to incorporate slope
information as a way to control for slope-related effects that
may have influenced the InSAR response from the terrain.
Second, while holding the boundaries of this initial segmen-
tation constant, a meso-scale segmentation was generated in
which the SRTMDIFF image was used to further regionalize
the existing segments. At this level, the resulting segmentation
defined regions in terms of relative homogeneity of both slope
and canopy height (i.e., hspc). Third, while holding the
boundaries of this second segmentation constant, a relatively
fine-scale segmentation was generated in which the CD image
was used as the final driver of the regionalization. The decision
to progress hierarchically from canopy height to canopy density
in the sequence of inputs rather than vice-versa was made in
order to ensure that vertical structure was considered at a broader
segmentation scale than horizontal structure and, therefore, was
the principal driver of segmentation size and subsequently the
amount of averaging imposed. Prior to initiating the segmenta-
tion procedure, the CD image was selected to provide an analysis
mask. In doing so, the segmentation process was constrained to
proceed in only those regions where canopy cover was present,
i.e., CD values greater than zero.

The segmentation process resulted in a vector layer
comprised of over 4.5 million image–object polygons. This
vector layer was used to compute a suite of object-based
statistical metrics. The first, and perhaps most significant, of
these metrics was the mean hspc (MHspc) value, calculated within
each of the 4.5 million polygons using data extracted from the
SRTMDIFF image. As a result of the object-based averaging
procedure, this metric represents a noise-reduced value of the
hspc within each polygon. The object-based standard deviation of
hspc (SDspc) was calculated as well. In addition to the hspc
metrics, object-based means for the SLP, CD and NED images
and standard deviations for the CD and NED images were
similarly computed. The area (AREA) of each image object was
also calculated.

3.2.2. Vertical offset evaluation
As observed by Brown et al. (2005) and Walker et al. (2007),

as well as discussed by Kellndorfer et al. (2004) and others, it is
possible for both the NED and SRTM DEM data to contain
vertical biases of varying magnitudes (centimeters to several
meters) (Hensley et al., 2000; Gesch et al., 2002). These biases,
typically a result of the DEM production history, are of little
concern when the observed offset is a constant value across a
region of interest. However, when a nonlinear offset (i.e., a
spatial trend) is identified, it must be removed or, at the very
least minimized, in order to avoid propagation of this nonlinear
1 Neither NLCD or LANDFIRE land cover layers were included in the
segmentation process in order to avoid the introduction of errors attributable to
misclassification. Land cover information was instead incorporated during the
process of model development. This topic is addressed further in Section 5.
error. Nonlinear offsets are commonly manifested as banding or
striping in the SRTM–NED difference image.

Following methods described by both Kellndorfer et al.
(2004) and Walker et al. (2007), barren and otherwise
nonvegetated regions were evaluated to determine if a vertical
offset existed between the NED and SRTM DEMs. Although a
mean difference (i.e., constant value) of approximately 2.0 m
was observed between the DEMs, no significant nonlinear
offset or trend was identified.

3.3. Spatial database joining

Although the FIADB, including all plot measurements, is
part of the public domain, federal law prohibits the USDA
Forest Service from releasing the exact coordinates of FIA plot
locations. In an effort to provide access to FIA plot coordinates
while maintaining privacy protection and long-term plot
integrity, the FIA program established the FIA National Spatial
Data Services (NSDS) unit where FIA plot locations can be
linked spatially with data acquired from remote sensing/
ancillary sources. Because coordinate locations must not leave
NSDS computers, all research and development activities
involving plot coordinates must be carried out on-site and
under the supervision of NSDS staff.

Final compilation of the MDDB required that a spatial join
be established between the 1395 FIA plots (and associated
reference variables) described in Section 3.1.4 and the eight
object-based metrics discussed in the previous section (Fig. 1).
The objective of the joining procedure was to extract image–
object data from beneath the 1395 FIA plot locations. All data
processing was performed at the USDA Forest Service Northern
SDCD S.D. Canopy Density
(NLCD)

X P

MNED Mean Elevation (NED) X P
SDNED S.D. Elevation (NED) X P
AREA Image Object Area

(eCognition)
X P
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Research Station, Durham, New Hampshire. Following data
extraction, eight object-based image variables were added to the
MDDB, bringing the total number of variables to 15. A
complete list of variables in the final MDDB is included in
Table 1.

Following the spatial joining, the MDDB was filtered further
using several criteria. First, filtering was carried out on the mean
canopy density (MCD) field to ensure that only cases with a
mean canopy density greater than zero were retained. Second,
the database was filtered hierarchically on condition class
number (CONDID) and forest type code (FLDTYPCD) such
that only cases identified by a single condition class (across all
subplots) and a single forest type were retained. This was done
to ensure the homogeneity of field plots in terms of horizontal
and vertical forest structure. Finally, filtering was carried out on
the AREA field using a threshold of 1.5 ha (i.e., ≈17 pixels).
Only cases having an area greater than or equal to 1.5 ha were
retained. This final filter was applied to ensure that each FIA
plot was associated with an image–object polygon large enough
to provide for adequate noise reduction. The filtering procedure
resulted in a final MDDB containing a total of 393 FIA plots
(i.e., cases; Fig. 2).

4. Model development

4.1. Choice of modeling framework

The availability of regional- to continental-scale datasets
derived from remotely sensed and other ancillary sources has
motivated recent research into the suitability of available
empirical statistical modeling techniques for broad-scale
prediction and mapping of forest structural attributes (Frescino
et al., 2001; Moisen & Frescino, 2002; Moisen et al., 2003).
Working throughout the Interior Western United States, Moisen
and Frescino (2002) compared five approaches for modeling six
Fig. 2. Approximate locations of 393 FIA field plots within MZ16 (central Utah). Da
(MDDB). Figure provided courtesy of FIA National Spatial Data Services.
different FIA-derived biophysical response variables and a suite
of satellite-derived predictor variables. The approaches includ-
ed linear models, generalized additive models (GAMS; Guisan
et al., 2002), classification and regression trees (CART;
Breiman et al., 1984), multivariate adaptive regression splines
(MARS; Friedman, 1991), and artificial neural networks.
Although the MARS and GAMS models performed marginally
better than the others, little appreciable difference among the
techniques was observed when applied to real data.

In response to advances in tree-based (i.e., CART) tech-
niques, including boosting (Freund & Shapire, 1996), bagging
(Breiman, 1996), and hybrid approaches, Moisen et al. (2003)
conducted another comparison as part of prototype mapping
activities conducted under the LANDFIRE project. The
research has particular relevance in the context of the current
mapping project because 1) MZ16 served as the prototype
mapping zone for the study and 2) FIA-derived BAWHT served
as one of two continuous response variables tested. The
BAWHT investigation involved a comparison of three separate
modeling techniques including 1) a simple CART model, 2) a
MARS model, and 3) a hybrid model combining tree-based
(i.e., CART) methods with recursive linear regression imple-
mented as part of the Cubist (www.rulequest.com) package.
Based on an evaluation of global performance measures and
residual plots, the MARS and Cubist models were judged to
have performed similarly (i.e., average errors equal to 2.95 and
2.81 m, respectively) while both outperformed the CART
model.

The overall performance and user-friendly characteristics of
tree-based modeling strategies have led to the formal adoption
of the Cubist approach by both the NLCD and LANDFIRE
mapping projects (Homer et al., 2004). Based on insights
provided by Moisen et al. (2003) as well as the widespread
acceptance of tree-based methods by the mapping applications
community, it was determined that regression trees would also
ta from these plots were retained as part of the final model development database

http://www.rulequest.com


Fig. 3. Variable importance plot generated in randomForest indicating the
relative importance of the first four-predictor variables over that of the last six in
the prediction of basal-area weighted average height (BAWHT).
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provide an appropriate modeling framework for the current
study. Two tree-based approaches, Cubist and randomForest
(Breiman, 2001), were subsequently selected for comparative
testing.

4.2. Tree-based regression

4.2.1. General background
Popularized by Breiman et al. (1984), regression trees have

evolved considerably in recent years as algorithm development
has focused on overcoming known deficiencies and enhancing
predictive power (Moisen et al., 2003). Important advancements
include the development of bagging and boosting techniques as
well as the maturation of hybrid tree-based methods. Bagging
(Breiman, 1996) and boosting (Freund & Shapire, 1996) fall into
the category of ensemble learning methods where the goal is to
construct a “forest” (i.e., ensemble) of expert trees and combine
them through a voting scheme (i.e., simple averaging) for the
purpose of improving predictive accuracy (Bauer & Kohavi,
1999; Dietterich, 2000). Bagging, a term derived from bootstrap
aggregation, produces replicate training sets, and hence trees,
by sampling with replacement from the training cases. Boosting
uses all training cases to construct each tree, but successive trees
place extra weight on cases that proved difficult to predict in
earlier trees. In bagging, all members of the ensemble have an
equal vote and a simple average is used to compute final predic-
tions (Chan et al., 2001; Quinlan, 1996). Conversely, in boosting,
different voting strengths are assigned to ensemble members
based on their accuracy. The Cubist and randomForest packages
are perhaps the most well known examples of regression-tree
approaches with ensemble learning enhancements.

Hybrid tree-based methods attempt to exploit the strengths of
both standard regression-tree algorithms and local modeling
techniques to enhance the predictive abilities of final models
(Moisen et al., 2003). A number of hybridization strategies have
been proposed in the literature, and the reader is referred to
Torgo (1999) for a detailed summary.

4.2.2. Cubist
The Cubist package (www.rulequest.com) implements a

hybrid tree-based approach that combines a regression-tree
algorithm with local modeling using a proprietary variant of
linear least squares regression (R. Quinlan, pers. comm.).
Options available in Cubist include composite and committee
models. Whereas composite models combine regression trees
with instance-based or nearest-neighbor models (Quinlan,
1993), committee models provide ensemble learning capabil-
ities similar to that of boosting. Additionally, Cubist provides
for f-fold cross validation, which is a common method for
obtaining more reliable estimates of predictive accuracy,
particularly when working with datasets that are not large
enough to support separate training and testing populations.

4.2.3. randomForest
First proposed by Breiman (2001), the concept of random

forests (RF) adds an additional layer of randomness to the bagging
strategy described above (Breiman, 1996; Liaw & Wierner,
2002). In addition to constructing each standard regression tree in
the ensemble with a different bootstrapped sample of the data, the
RF algorithm incorporates a unique approach to node splitting.
Whereas node splitting is typically accomplished using the best
(i.e., optimal) split among all predictors, RF node splitting is
achieved using the best split among a random subset of predictors
chosen at each node (Breiman, 2001; Liaw&Wierner, 2002). The
RF bootstrap samples used to construct each tree omit
approximately 1/3rd of the cases. These hold-out cases are
referred to as out-of-bag (OOB) (Breiman, 2001, 2006).

The randomForest package provides an R interface to the
original Fortran programs written by Breiman and Cutler
(available at www.stat.berkeley.edu/ users/breiman) (Liaw &
Wierner, 2002). R is a programming environment for statistical
computing and graphics (R Core Development Team, 2005;
www.r-project.org), and is available as Free Software under the
terms of the Free Software Foundation's GNU General Public
License. The R implementation offers several options for fine
tuning and analyzing the RF model as well as a number of
instructive text and graphical outputs. Among these, perhaps the
most useful is the variable importance plot (VIP). To produce a
VIP plot, the RF algorithm estimates the importance of each
predictor by computing how much the error increases for a
given tree when OOB data for each predictor are randomly
permuted while all other predictors are left unchanged (Liaw &
Wierner, 2002).

5. Implementation

One of the principal goals of the regression-tree analysis was
to test and evaluate the Cubist and randomForest packages as
part of an operational framework for broad-scale map

http://www.rulequest.com
http://www.stat.berkeley.edu/users/breiman
http://www.r-project.org
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generation. This meant not only an assessment based on
predictive accuracy, but also one that considered practical issues
such as accessibility, flexibility, and interoperability. Although
Cubist and randomForest share much of the same regression-
tree functionality, they differ somewhat in terms of the specific
parameter options offered and the terminology used to describe
them. Nevertheless, a one-to-one parameterization of the
models was effectively achieved.

The first step in model parameterization focused on
predictor-variable selection. Toward this end, three randomFor-
est VIP plots were generated, i.e., one for each response
variable, to determine which of the ten predictor variables
warranted inclusion in the modeling comparison. The plots
were produced using all cases in the MDDB (i.e., 393) and the
default randomForest settings which consist of a 500-tree
ensemble, a random sample of three predictors per node, and a
minimum node size of five cases. Fig. 3 includes the VIP plot
produced for BAWHT, which is highly representative of the
other height metrics (i.e., AVGHT and MAXHT). Inspection of
the plot indicated that forest type code (FLDTYPCD), mean
elevation (MNED), mean scattering phase center height
(MHspc), and mean canopy density (MCD) possessed consid-
erable explanatory value in the regression-tree model. The
Table 2
Performance measures for each of 45 Cubist and randomForest tree-based
regression models used to predict basal area weighted height (BAWHT)

Cubist randomForest

Basal Area Weighted
Height
(BAWHT)

Basal Area Weighted
Height
(BAWHT)

rtrain
n=294

rtest
n=99

Average
error (m)

rtrain
n=294

rtest
n=99

Average
error (m)

One variable models
MHspc 0.55 0.73 3.5 0.88 0.55 3.9
MNED 0.70 0.64 3.2 0.91 0.51 3.9
MCD 0.49 0.54 4.1 0.88 0.42 4.4
FLDTYPCD 0.88 0.87 2.0 0.89 0.87 2.2

Two variable models
MHspc, MNED 0.83 0.75 2.6 0.95 0.75 2.6
MHspc, MCD 0.61 0.78 3.0 0.93 0.73 3.1
MHspc, FLDTYPCD 0.91 0.90 1.9 0.95 0.89 2.0
MNED, MCD 0.78 0.74 2.7 0.95 0.74 2.7
MNED, FLDTYPCD 0.89 0.87 2.1 0.93 0.86 2.2
MCD, FLDTYPCD 0.88 0.88 2.0 0.94 0.87 2.0

Three variable models
MHspc, MNED, MCD 0.83 0.79 2.5 0.96 0.82 2.4
MHspc, MNED,
FLDTYPCD

0.91 0.90 1.9 0.96 0.89 1.9

MHspc, MCD,
FLDTYPCD

0.91 0.89 1.9 0.97 0.89 2.0

MNED, MCD,
FLDTYPCD

0.88 0.88 2.0 0.95 0.88 2.0

Four variable models
MHspc, MNED, MCD,
FLDTYPCD 0.91 0.90 1.8 0.97 0.89 1.9

The performance of all possible combinations of the four-predictor variables
(i.e., MHspc, MNED, MCD, and FLDTYPCD) is reported.

Fig. 4. Plots of observed versus predicted AVGHT (m) derived from Cubist tree-
based models in which a) a single predictor variable (i.e., FLDTYPCD) and b)
all four-predictor variables (i.e., MHspc, MNED, MCD, and FLDTYPCD) were
used in model development.
remaining variables had importance values that were very
similar to one another and not particularly high when compared
to the other four. Taking into consideration both variable
economy as well as an intuitive sense of agreement with the VIP
plot, the decision was made to proceed with the Cubist–
randomForest comparison using only the first four predictors in
Fig. 3. It is important to note that FLDTYPCD was retained as a
predictor variable in spite of being derived from the FIADB and
not a continuous raster data layer. This decision was made
because FLDTYPCD is a ground-observed variable and,
therefore, represents the most accurate source of forest cover
type information available from the perspective of model
development. The replacement of FLDTYPCD with a spatially
continuous surrogate layer in the context of model prediction
and map generation is addressed in Section 6.2.

For the purposes of the primary Cubist–randomForest
comparison, all possible combinations (15 total) of the four-
predictor variables were used to construct 45 different ensemble
regression trees predicting each of the three height response
variables (i.e., BAWHT, AVGHT, MAXHT). The specific
objectives of this comparison were to 1) determine which suite
of predictor variables possesses the greatest explanatory value



Table 3
Performance measures for six cross-validated randomForest tree-based
regression models used to predict each of three height response variables (i.e.,
BAWHT, AVGHT, MAXHT)

Cross-
validation
results

Basal Area
Weighted Height
(BAWHT)

Average Height
(AVGHT)

Maximum Height
(MAXHT)

rcross
validation

(n=393)

Average
error
(m)

rcross
validation

(n=393)

Average
error
(m)

rcross
validation

(n=393)

Average
error
(m)

Cubist
MHspc, MNED,

MCD,
FLDTYPCD

0.89 1.9 0.90 1.5 0.87 3.0

randomForest
MHspc, MNED,

MCD,
FLDTYPCD

0.89 2.0 0.90 1.5 0.87 3.1

Models were constructed using all four-predictor variables (i.e., MHspc, MNED,
MCD, and FLDTYPCD).
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in terms of canopy height prediction, 2) determine which of the
three response variables is predicted most accurately, and 3)
determine how accurately canopy height can be estimated, i.e.,
what level of error can be expected. The comparison was
conducted using randomly selected independent training and
testing datasets of 294 and 99 cases, respectively (Fig. 1). In
both Cubist and randomForest, 500-tree ensembles (called
committees in Cubist and forests in randomForest) were grown
using the training dataset, and models constructed from the
training dataset were then validated against (i.e., used to predict)
the unseen cases in the testing dataset.

The performance of both the Cubist and randomForest
models was evaluated using the correlation coefficient (r) and
the average error (AE). The correlation coefficient was reported
for both the training and testing datasets as a measure of linear
agreement between the observed and predicted values. The
average error was based on data from the testing dataset only
Fig. 5. Map of basal-area weighted average height (BAWHT) (M
and represents the average of the absolute differences between
observed and predicted values. To simulate the bootstrapping
procedure implemented in randomForest, all Cubist regression-
tree models were constructed using a 3-fold cross validation.

A secondary Cubist–randomForest comparison was con-
ducted wherein all (i.e., 393) cases and all (i.e., 4) predictor
variables were used to construct three different ensemble
regression trees — one for each response variable. The primary
objective of this analysis was to compare the accuracy of
selected Cubist–randomForest models developed under a cross-
validation strategy to that of models developed under the
independent validation strategy described above.

6. Results and discussion

6.1. Model development and validation

The results of the primary Cubist–randomForest comparison
are presented in Table 2. The table includes model performance
measures for 15 different tree ensembles representing all
possible predictor-variable combinations corresponding to the
response variable basal area weighted height (BAWHT). The
results from the average height (AVGHT) and maximum height
(MAXHT) variables were not included as they did not differ
significantly from those of BAWHT. Based on an evaluation of
these results, a number of observations can be made. First,
inspection of the average errors suggests that predictive
accuracy does not differ significantly between the Cubist and
randomForest models. This generally holds true regardless of
the predictor-variable combination.

Second, predictive accuracy generally improves with the
number of predictor variables in themodel. Although the presence
of such a trend is not surprising from a statistical point of view, it is
consistent with what is expected given the variable importance
information presented in Fig. 3. The existence of this trend
appears to be package-independent; however, it is noticeably
stronger in the randomForest case, i.e., the average error is almost
Z16 — central Utah). Legend reflects BAWHT in meters.



Table 4
Tabular cross-walk for converting between FIA forest type and LANDFIRE
existing vegetation type classes

No. of
plots

FIA Forest Cover Type
(FLDTYPCD)

LANDFIRE Existing
Vegetation Type (EVT)

125 Pinyon–Juniper — 180 ⇦ Colorado Plateau
Pinyon–Juniper — 2016

⇦ Great Basin Pinyon–Juniper — 2019
⇦ Rocky Mountain Foothill Limber

pine–Juniper — 2049
⇦ Inter-Mountain Basins Juniper — 2115

22 Douglas-fir — 201 ⇦ Rocky Mountain Montane Dry-Mesic
Mixed Conifer — 2051

⇦ Rocky Mountain Montane
Mesic Mixed Conifer — 2052

15 Ponderosa Pine — 221 ⇦ Southern Rocky Mountain
Ponderosa Pine —2054

⇦ Rocky Mountain Ponderosa
Pine — 2117

46 Engelmann Spruce/
Subalpine Fir — 260

⇦ Rocky Mountain Subalpine Dry-Mesic
Spruce-Fir — 2055

⇦ Rocky Mountain Subalpine Mesic
Spruce-Fir — 2056

18 White Fir — 261 ⇦ White Fir — 2208
28 Lodgepole Pine — 281 ⇦ Rocky Mountain Lodgepole

Pine — 2050
4 Foxtail/Limber/

Bristlecone Pine — 360
⇦ Inter-Mountain Basins Subalpine

Limber-Bristlecone Pine — 2020
⇦ Rocky Mountain Subalpine Montane

Limber-Bristlecone Pine — 2057
61 Aspen — 901 ⇦ Rocky Mountain Aspen — 2011

⇦ Inter-Mountain Basins Aspen-Mixed
Conifer — 2061

55 Deciduous Oak — 925 ⇦ Shrub Live Oak — 2215
⇦ Gambel Oak — 2217

13 Mountain
Mahogany — 953

⇦ Inter-Mountain Basins Mountain
Mahogany — 2062

6 Intermountain
Maple — 954

⇦ Rocky Mountain Bigtooth
Maple — 2012

393

Table 5
Summary of BAWHT map accuracy based on performance measures computed
from three different sets of FIA field plots and associated map values

Polygon size range No. of
plots

Percent of
total plots

Correlation
coefficient (r)

Average
error (m)

b1.5 ha (17 pixels) 133 25 0.81 2.6
≥1.5 ha (17 pixels) 375 75 0.90 1.9
All Polygons 508 100 0.88 2.1
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always minimized when all four-predictor variables are included.
Nevertheless, it is important to note that the difference in error
reduction observed following the inclusion of additional, i.e.,
third or fourth, variables is not always significant. For example,
Fig. 6. Plot of observed versus predicted BAWHT based on m
BAWHT can be estimated by randomForest using either three
(e.g., MHspc, MNED, and FLDTYPCD) or four predictors (e.g.,
MHspc,MNED,MCD, and FLDTYPCD)with an average error of
1.9 m (rtest=0.89) in both cases (Table 2). In this example, the
addition ofMCD appears to have negligible explanatory value for
the prediction of BAWHT. This particular result is not unexpected
given that MCD exhibits the lowest importance value of the four-
predictor variables (Fig. 3).

The previous example underscores the need to consider not
only performance measures but also variable importance when
evaluating tree-based models. At the same time, it is perhaps
equally important to consider the distributional characteristics
of the predictions, and the implications these characteristics
might have for the final map product. For example, AVGHTcan
be estimated by randomForest with an average error of 1.6 m
(rtest =0.89) using all four predictors. Alternatively, the same
estimation can be made with nearly the same level of
performance (i.e., 1.6 m average error; rtest =0.88) using only
a single variable, forest cover type (i.e., FLDTYPCD), as a
predictor. Statistically speaking, a model based on FLDTYPCD
alone would seem to afford both model simplicity and
predictive power. However, as a categorical predictor,
FLDTYPCD lacks the necessary variance to produce map
products with acceptable local accuracy. This lack of variance is
manifested clearly in Fig. 4a, wherein a plot of actual versus
predicted AVGHT is observed to have a pronounced horizontal
banding pattern. In contrast, Fig. 4b illustrates the relatively
even distribution that results when all four predictors are
included in the model. The consequence of basing model
development on a single categorical predictor is that the hybrid
randomForest (or Cubist) algorithm is effectively reduced to a
ap extractions from beneath 508 FIA sample locations.



Fig. 7. Histogram of observed BAWHT within MZ16 illustrating the bimodal
distribution of height values.

Table 6
Summary of BAWHT map accuracy based on performance measures computed for each of the 11 FIA forest types observed within MZ16

Forest types are presented in order of increasing observed average BAWHT (see third column). Dashed line separates short-statured types (above) from all others (below).
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standard regression tree. That is to say, AVGHT is predicted not
with a series of local regression models, but rather with a series
of local constants, i.e., mean values (Fig. 4a). As a result,
although the statistical performance of FLDTYPCD is note-
worthy (Table 2), this variable does not demonstrate sufficient
predictive ability in a mapping context.

6.2. Map generation and accuracy assessment

An effort was undertaken to determine how the tree-based
modeling framework might be most efficiently incorporated into
a streamlined workflow for model-based prediction and map
generation (Fig. 1). As part of this effort, a second Cubist–
randomForest comparison was conducted wherein all cases (i.e.,
393) and all predictor variables (i.e., 4) were used to construct
three different ensemble regression trees, one for each response
variable (Table 3). The primary objective of this analysis was to
compare the accuracy of selected Cubist–randomForest models
developed under a cross-validation strategy to that of models
developed under the independent validation strategy summa-
rized in the previous section. The analysis was constrained to
include only models constructed from all four predictors
because, among the 15 different predictor-variable combinations
evaluated, the four-predictor models are consistently among the
most accurate (Table 3).

Generally speaking, model performance is very consistent
with that reported under the independent training and testing
scenario (Table 2). For example, Cubist produces average
errors of 1.9, 1.5, and 3.0 m for BAWHT, AVGHT, and
MAXHT, respectively, under the cross-validation strategy.
Conversely, average errors of 1.8, 1.5, and 3.0 m are achieved
for BAWHT, AVGHT, and MAXHT, respectively, under
the independent validation strategy (Table 2). In addition,
the observed correlation coefficients are very consistent
among the models. Overall, these results suggest that reliable
estimates of predictive accuracy are indeed obtainable through
cross-validation as implemented in both Cubist and randomFor-
est. This is particularly advantageous when the number of
available cases is insufficient to form suitable training and testing
populations.
The ultimate goal of this proof-of-concept study was to
produce a high-resolution map of vegetation canopy height for
MZ16. The model results presented in Tables 2 and 3 suggest
that a number of different height maps could legitimately be
produced, each having different strengths and weaknesses
depending on the application. For example, a map of average
height (AVGHT) might be produced as a general purpose layer
to inform analyses related to fire modeling, habitat manage-
ment, or biodiversity conservation. Alternatively, a map of
maximum height (MAXHT) might be useful for identifying
tracts of old growth forest or forested areas prone to windthrow.
In the context of the current research, which is motivated by the
need for accurate baseline estimates of aboveground biomass
and carbon stocks, it is hypothesized that a map of basal-area
weighted average height (BAWHT) will be most useful. That is
to say, BAWHT is likely to be a more robust predictor of
aboveground biomass and carbon stocks than other height
metrics because it takes into consideration not only stem height,
but stem diameter as well.

A series of computer programs was implemented in R to
generate a raster map of BAWHT for MZ16 at a resolution of
30 m (Fig. 5). The map was produced using the four-predictor,



Fig. 8. Map illustrating the location and extent of different SRTM datatake regimes within MZ16 (central Utah). Legend reflects the number of SRTM datatakes, which
generally increases with distance north.
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cross-validated randomForest model reported in Table 3.
Although the Cubist model was observed to have a slight
edge in terms of overall predictive performance (Table 3), the
randomForest framework was ultimately selected as the source
of tree-based models for map generation. This decision was
motivated in large measure by the greater accessibility and
flexibility offered by randomForest within the open-source R
environment, including the ability to implement parallel
processing on Linux-based computing clusters. The map was
constructed from pixel-by-pixel predictions based on inputs
from the segment-based mean values associated with the MHspc

predictor variable together with data from the original NED,
CD, and FLDTYPCD raster layers. The segment-based mean
values associated with the MNED and MCD variables were not
used in map generation because noise reduction was not an
issue where these layers were concerned and given that the
pixel-to-pixel variation present in the original raster layers
represented a potentially important source of explanatory
information. As a surrogate for the FIADB-derived FLDTYPCD
variable, the LANDFIRE EVT layer (see Section 3.1.3) was
used as a spatially explicit predictor variable. This was
accomplished by developing a cross-walk between FIA forest
type and LANDFIRE existing vegetation type (Table 4).

A plot of observed versus predicted BAWHT is shown in
Fig. 6. This plot illustrates the predictive performance of the
map itself and was constructed using predicted BAWHT values
extracted from the map following generation of the raster layer
(Fig. 5). Map extractions were performed by FIA NSDS;
predicted values were extracted from individual 30-m pixels
associated with the centers of 508 FIA field plots. Of these
plots, 375 were part of the final MDDB2. The remaining 133
2 The final MDDB included a total of 393 plots. Of these, 18 plots (i.e., 393-
375) were not associated with map predictions due to misclassification errors
(e.g., non-forest classes assigned to forested pixels) in the LANDFIRE EVT
layer. As a result, these plots (i.e., 5% of the MDDB) are not represented in Fig. 6.
plots were originally excluded from model development
because they occurred within image–object polygons that
were deemed too small (i.e.,b1.5 ha/17 pixels) to provide for
adequate noise reduction (see Section 3.3). Performance
measures for each of the aforementioned plot subsets (133
and 375), as well as for the total set (508), are reported in
Table 5. The 133-plot subset produced an average error of 2.6 m
(r=0.81; Table 5). This subset holds perhaps the greatest value
for the evaluation of map accuracy because it provides not only
for an independent validation of the BAWHT map (i.e., due to
exclusion from the MDDB), but also for a worst-case estimate
of average map error (i.e., due to insufficient averaging). As
expected, the average error of 1.9 m (r=0.90) attributed to the
375-plot subset is 1) markedly lower (by approximately 0.7 m)
than that of the subset based on 133 plots and 2) generally
consistent with that reported in Table 3 for the 293-plot, cross-
validated model result (average error=2.0 m). It should be
noted that this result is likely biased to a small degree by the fact
that 18 of the original 393 MDDB plots were not included in the
375-plot subset (for further details, see Footnote 2). In
summary, when the accuracy of the map is evaluated as a
whole, i.e., when the two plot subsets are combined, an average
error of 2.1 m (r=0.88) is observed (Table 5).

It is also possible to evaluate the accuracy of the BAWHT
map in terms of how well individual FIA forest type classes and
groups of classes are predicted (Table 6). A cursory inspection
of Fig. 6 reveals an obvious clustering of data values, which is
an artifact of the strongly bimodal height distribution observed
within MZ16 (Fig. 7). Over half of the 508 FIA field plots (i.e.,
266; 52%) are associated with forested types (e.g., woodlands)
of inherently short stature (i.e., average BAWHT≤8.5 m),
including Deciduous Oak, Mountain Mahogany, Pinyon–
Juniper, Intermountain Maple, and Foxtail/Limber/Bristlecone
Pine (Table 6). The remaining plots (i.e., 242; 48%) comprise
the typical mid- to high-elevation forest types of the
Intermountain West including Ponderosa Pine, Lodgepole



Fig. 9. Averaging index (AI) map (MZ16— central Utah). Legend reflects the number of SRTMC-band datatakes multiplied by image–object polygon size (in pixels).
Whereas the number of acquired datatakes ranges from 1 to 4 (Fig. 8), polygon size ranges from 1 to 551 pixels. Thus, the map assumes values between 1 (i.e., one
datatake multiplied by a polygon consisting of one pixel) and 2204, with the observed and theoretical maximums being equal.
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Pine, Douglas-fir, and Trembling Aspen among others. Within
this group, the average BAWHT is greater than 13.5 m
(Table 6).

Also included in Table 6 are accuracy statistics associated
with each of the 11 FIA forest type classes for which BAWHT
values were predicted and mapped. In general, a reasonably
close correspondence is revealed between the observed and
predicted values reported for both the average and standard
deviation of BAWHT. Error statistics are reported both as an
average and as a percentage of average BAWHT. Not
surprisingly, error constitutes the greatest percentage of
average BAWHT among the five short-statured types
(Table 6). Although the average error among these classes is
less than 3.0 m with the exception of the Mountain Mahogany
class (i.e., 4.2 m), the error percentage of average BAWHT
remains above 25%. Conversely, among the remaining classes,
where average error is also less than 3.0 m, the error percentage
Fig. 10. Plot illustrating the relationship between the averaging index (AI) and BAW
points, is observed to decrease with increasing values of AI.
of average BAWHT is consistently below 20%. It is important
to point out that this trend is exacerbated to some degree by the
variance attenuation associated with the BAWHT predictions
(Fig. 6; see Cohen et al., 2003). In particular, observed
BAWHT values less than the mean (i.e., short-statured trees)
tend to be somewhat overpredicted, resulting in markedly
higher error percentages.

6.3. Map confidence estimation

The presence of random phase noise in the SRTM DEMs has
been shown to be a potentially significant source of error in
SRTM-derived estimates of canopy height (Kellndorfer et al.,
2004; Walker et al., 2007). It has also been shown that sample
averaging, accomplished using multiple SRTM datatakes and/or
aggregations of SRTM pixels, represents a viable strategy for
reducing phase noise error. In the context of the current
HT residual error. The range of the residuals, reflected in the vertical spread of



3 The randomForest package was not included in the comparative analysis of
modeling approaches conducted by Moisen et al. (2003; see Section 4.2.1 for
further details). As a result, it was not possible to present here the results of a
randomForest comparison.

Fig. 11. Curves illustrating the level of error expected for 68% (one standard
deviation) and 95% (two standard deviations) of the BAWHT map.

496 W.S. Walker et al. / Remote Sensing of Environment 109 (2007) 482–499
research, a segmentation-based approach to phase noise re-
duction was implemented and subsequent model development
was carried out using only data associated with polygons greater
than or equal to 1.5 ha (≈ 17 pixels) in size. In addition to
reducing phase noise error in the SRTMDIFF layer, it is
reasonable to assume that this averaging strategy contributed to
error reduction in both the CD and NED layers as well.

Given the prominent role played by sample averaging in the
generation of the BAWHT map, and in the interest of exploring
further the results reported in Table 6, an effort was undertaken
to investigate in detail the relationship between sample
averaging and map accuracy. It was hypothesized that this
relationship should manifest itself as a functional trend in which
the magnitude of residual errors decreases as the level of
averaging increases. Support for this hypothesis would suggest
that more confidence be placed in BAWHT height predictions,
i.e., individual map pixels, associated with larger polygons and
vice-versa.

To test the hypothesis, it was necessary to quantify the
amount of sample averaging applied to each 30-m pixel in the
BAWHT map. A simple averaging index (AI) was developed in
which the index value computed for each pixel reflected the
number of SRTM C-band datatakes associated with the pixel
(Fig. 8) multiplied by the size (measured in pixels) of the
particular image–object polygon to which the pixel belonged.
An AI map of MZ16 is shown in Fig. 9. From this map,
individual pixel values were extracted from beneath the center
of each of the 508 FIA field plots used in the previous accuracy
assessment. Whereas the AI map values range from 1 to 2204,
values in the extracted subset ranged from 2 to 1296.

A plot of AI versus residual error is presented in Fig. 10.
Inspection of the plot reveals a reasonably clear relationship
between the two variables. As hypothesized, the magnitude of the
residual values, as evidenced by their vertical spread, is observed
to decrease as the values of the AI decrease. Based on the
information contained in Fig. 10, it was possible to generate a pair
of confidence curves relating predictive accuracy, as manifested
in the residual values, to the degree of averaging applied, as
reflected in the AI (Fig. 11). The curves were generated from the
standard deviations of residual values occurring within seven
separate AI bins. The primary curve (closed circles) represents
one standard deviation from the mean residual value in each bin.
Assuming the sample size in each bin is large enough to be
representative of the map as a whole, then this curve defines the
maximum error in each bin that can be expected for 68% of map
pixels. Similarly, the secondary curve (open circles), representing
two standard deviations from the mean, defines the maximum
level of error in each bin that can be expected for 95% of map
pixels. Overall, the curves reveal that 68% of pixels are expected
to have errors less than ±3.7 m (Fig. 11).

A more complete picture of error dynamics within the
BAWHT map is provided by Table 7, which illustrates the
distribution of AI values among the seven bins used to create the
confidence curves referenced in Fig. 11. For example, the table
reveals that roughly 87% of pixels in the BAWHT map have AI
values of 15 or greater. Thus, it can be said with nearly 70%
confidence that 87% of the map area will have errors less than ±
3.0 m.

7. General discussion

The proof-of-concept study presented here is similar, in
many respects, to work recently conducted by Moisen et al.
(2003) in the context of LANDFIRE prototype mapping
activities. In general, both efforts focus on the mapping of
BAWHT in MZ16 using hybrid tree-based regression techni-
ques. However, the specifics of the two approaches differ to a
large degree. The principal difference involves the use by
Moisen et al. (2003) of multiple predictor variables derived
from passive optical data sources including multi-date, multi-
band Landsat data and Landsat-derived tasseled cap indices.
Additionally, Moisen et al. (2003) based model development
activities on a larger complement of FIA field plots (2052)
acquired over a broader time frame (1993–2001). Given these
and other methodological differences between the two efforts, it
is not possible to make any firm judgments about the merits of
either approach based on the information available. Neverthe-
less, a number of inferences can be made in the context of a
performance-based comparison. In terms of overall accuracy,
the InSAR-optical fusion approach reported on here compares
quite favorably with that of Moisen et al. (2003). Whereas, the
Cubist-based committee model3 implemented by Moisen et al.
(2003) produced an average error of 2.81 m (9.23 ft) and a
correlation coefficient of 0.75, virtually the same model
implemented here resulted in an average error of 2.06 m
(6.76 ft) and a correlation coefficient of 0.88. Moisen et al.
(2003) modeled BAWHTas a function of 40 predictor variables;
only four were considered in the context of the current modeling
effort. In general, it is impossible to ascribe the observed
improvement in predictive accuracy (0.75 m) afforded by the
current approach to any particular element of either approach.
Nevertheless, the strategy presented here possesses



Table 7
Distribution of averaging index (AI) values within the mapped region of MZ16

AI values Distribution (%)

1 0.2
2–9 7.2
10–14 6.0
15–99 47.1
100–199 23.0
200–299 8.9
300–399 3.8
400–499 1.8
500+ 2.0

100.0

497W.S. Walker et al. / Remote Sensing of Environment 109 (2007) 482–499
characteristics that make it uniquely appealing. Principal among
these is the inclusion of a continuous predictor variable with
demonstrated sensitivity to forest structure in the vertical
dimension. Regardless of ecoregional-specific influences (e.g.,
topography), the SRTM-based predictor is expected to remain a
significant explanatory contributor. Perhaps equally appealing
is the level of variable economy afforded by the approach.
Because model development was predicated on a physical
understanding of the predictors and their role in explaining
vegetation canopy height, few variables were needed to achieve
a relatively high level of accuracy. Given the overall
performance and intuitive appeal of the approach, the potential
exists to contribute in a meaningful way to the improvement of
the LANDFIRE canopy height product.

While the overall accuracy of the BAWHT map is quite
encouraging, important caveats associatedwith various aspects of
the mapping approach warrant acknowledgement. First, although
the FIA program is currently the only nationwide source of
consistent and reliable forest inventory data, the FIADB was
never intended for use as a reference database for remote sensing
applications. Generally speaking, the design, size, and spatial
frequency of FIA field plots is not well suited to broad-scale, high-
resolution mapping of forest structural attributes. Nevertheless,
this proof-of-concept study provides yet further evidence to
support the use of the FIADB in regional- to continental-scale
mapping efforts. Simply put, projects of this sort would be wholly
impossible without the long-standing commitment of the U.S.
Congress and USDA Forest Service to support and maintain the
FIA network. Given the certainty of advancements in high-
resolution, stand-level remote sensing technologies such as lidar,
the FIA network will likely need to evolve and keep pace with
such advancements if it is going to remain relevant to the needs of
an ever-expanding and technically-inclined user community.

A second caveat involves the use of derivative map products
such as the CD and LANDFIRE EVT layers as predictor
variables in model development. Because errors in derivative
products are not uncommon, and because they can be difficult to
track given the general lack of reliable and/or published accuracy
assessments, derivatives are best avoided in projects where
unwanted error is likely to accumulate in a final map product.
Both the derivative CD and LANDFIRE EVT are well removed
from the raw Landsat ETM+ data used in their production.
Although the value of both products, and particularly the
LANDFIRE EVT, has been demonstrated clearly in the current
context, their replacement by either Landsat ETM+ at-satellite
reflectance data or tasseled-cap indices is worthy of future
testing.

Finally, it is important to acknowledge that the value of the
SRTM MHspc variable for canopy height prediction is certain to
vary considerably among the 66mapping zones that comprise the
conterminous U.S. For example, in MZ16 and throughout much
of the western U.S., pronounced elevational gradients govern
precipitation and solar radiation to pattern the distribution and
associated vertical structure of vegetation (Barnes et al., 1998). As
a result, the relative explanatory power of the SRTM MHspc

predictor is less than that of either the FLDTYPCD or MNED
variables (Fig. 3). Additionally, it is well known that InSARDEM
errors tend to increase in regions of diverse topography where
layover, shadow, and concomitant decorrelation can greatly
complicate the process of phase unwrapping (Hanssen, 2001). For
these reasons,MZ16may not provide themost appropriate test for
an InSAR-optical fusion approach to canopy height mapping. At
the same time, success of the approach in the western U.S. might
be viewed as an encouraging indicator of performance throughout
much of the East where predictors like FLDTYPCD and MNED
correlate much less with canopy height.

8. Conclusions

The proof-of-concept study presented here reveals that
production of the first InSAR/optical fusion-based continu-
ous-surface map of vegetation canopy height for the contermi-
nous U.S. is an ambitious goal, but one that is certainly
achievable. The innovative segmentation-based approach brings
advanced processing and analysis techniques to bear on some of
the best available spatial data for the purpose of filling a sig-
nificant void in our capacity to quantify trends in vertical forest
structure across broad spatial scales. The approach provides both
the theoretical and operational framework for future work,
focused not only on completion of the national map of canopy
height, but also on subsequent generation of the first-ever circa-
2000 baseline dataset of aboveground biomass and carbon stocks
for the conterminousU.S. These layers are being generated as part
of the National Biomass and CarbonDataset 2000 (NBCD 2000),
which is scheduled for completion in early 2009. Maps of
vegetation canopy height, aboveground dry biomass, and carbon,
together with spatial accuracy metrics, will be accessible at 30 m
postings via the U.S. Geological Survey Seamless Data
Distribution System.
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